
C H A P T E R 3

What Is Open Source and
How Does It Work?

In January 1991 a computer science graduate student at the University

of Helsinki named Linus Torvalds bought himself a personal com-

puter with an Intel 80386 processor, 4 megabytes of memory, and a 40-

megabyte hard drive—quaint in today’s computing environment, but

quite a powerful personal setup for 1991. Like most PCs at the time,

the machine came with Microsoft DOS (disk operating system) as its

standard software. Torvalds had no love for DOS. He strongly pre-

ferred the technical approach of the UNIX-style operating systems

that he was learning about in school. But he did not like waiting on

long lines for access to a limited number of university machines that

ran Unix for student use. And it simply wasn’t practical to run a com-

mercial version of Unix on his PC—the available software was too ex-

pensive and also too complicated for the hardware.

In late 1990 Torvalds had heard about Minix, a simplified Unix

clone that Professor Andrew Tanenbaum at Vrije University in Amster-

dam had written as a teaching tool. Minix ran on PCs, and the source

code was available on floppy disks for less than $100. Torvalds installed

this system on his PC. He soon went to work building the kernel of his

own Unix-like operating system, using Minix as the scaffolding. In au-

tumn 1991, Torvalds let go of the Minix scaffold and released the

source code for the kernel of his new operating system, which he called

Linux, onto an Internet newsgroup, along with the following note:

I’m working on a free version of a Minix look-alike for AT-386 comput-

ers. It has finally reached the stage where it’s even usable (though it

54

may not be, depending on what you want), and I am willing to put out

the sources for wider distribution. . . . This is a program for hackers by

a hacker. I’ve enjoyed doing it, and somebody might enjoy looking at it

and even modifying it for their own needs. It is still small enough to un-

derstand, use and modify, and I’m looking forward to any comments

you might have. I’m also interested in hearing from anybody who has

written any of the utilities/library functions for Minix. If your efforts

are freely distributable (under copyright or even public domain) I’d

like to hear from you so I can add them to the system.1

The response was extraordinary (and according to Torvalds, mostly

unexpected). By the end of the year, nearly 100 people worldwide had

joined the newsgroup. Many of these contributed bug fixes, code im-

provements, and new features to Torvalds’s project. Through 1992

and 1993, the community of developers grew at a gradual pace—even

as it became generally accepted wisdom within the broader software

community that the era of Unix-based operating systems was coming

to an end in the wake of Microsoft’s increasingly dominant position.2

In 1994, Torvalds released the first official Linux, version 1.0. The

pace of development accelerated through the 1990s.

By the end of the decade, Linux was a major technological and mar-

ket phenomenon. A hugely complex and sophisticated operating sys-

tem had been built out of the voluntary contributions of thousands of

developers spread around the world. By the middle of 2000 Linux ran

more than a third of the servers that make up the web. It was making

substantial inroads into other segments of computing, all the way from

major enterprise-level systems (in banks, insurance companies, and

major database operations) to embedded software in smart chips and

appliances. And in 1999 Linux became a public relations phenome-

non. VA Linux and Red Hat Software—two companies that package

and service versions of Linux as well as other open source programs—

startled Wall Street when they emerged among the most successful ini-

tial public offerings on NASDAQ. Suddenly the arcane subjects of op-

erating systems and source code had moved from the technical jour-

nals to the front page of The New York Times. And open source became

a kind of modern day Rorschach test for the Internet-enabled society.

Chapter 4 contains a detailed history of how open source evolved

from about 1990 to the present. This chapter describes the phenome-

non: What is open source and how does it function? To make sense of

What Is Open Source and How Does It Work? • 55

the data that captures what we know about the open source movement

and the people who contribute to it requires an understanding of what

we are measuring and why. That sounds obvious, but putting this prin-

ciple into practice is not so simple. Linux is just one example of an ex-

tremely diverse phenomenon. To approach this analytic problem, I

use a two-pronged strategy. First, I present a simple and sparse ideal-

typical description of an open source project. As an ideal type it cap-

tures the major shared characteristics of open source, although it is

not itself “true” for any single project.3

Second, I situate this ideal type within the framework of a production
process, a conceptual move central to the logic of this book. The es-

sence of open source is not the software. It is the process by which soft-

ware is created. Think of the software itself as an artifact of the produc-

tion process. And artifacts often are not the appropriate focus of a

broader explanation. If I were writing this book in 1925 and the title

was The Secret of Ford, I would focus on the factory assembly line and the

organization of production around it, not about the cars Ford pro-

duced. Production processes, or ways of making things, are of far more

importance than the artifacts produced because they spread more

broadly. Toyota, for example, pioneered lean production in a factory

that made cars. Twenty years later, this way of making things had

spread throughout the industrial economy. Similarly, open source has

proved itself as a way of making software. The question becomes, what

are the conditions or boundaries for extending open source to new

kinds of production, of knowledge and perhaps of physical (indus-

trial) goods as well? Intriguing questions—but not answerable until we

have a more sophisticated understanding of what the open source pro-

duction process is, how it works, and why.

This chapter describes the open source process by situating it within

the “problem” that it is trying to “solve” and then focusing on the peo-

ple who contribute to open source software and how they relate one to

another. I pose and answer, as far as possible given the limitations of

the data and the variation among different open source projects, four

ideal-type questions.

• Who are the people who write open source code?
• What do these people do, exactly?
• How do they collaborate with each other?
• How do they resolve disagreements and deal with conflict?

56 • THE SUCCESS OF OPEN SOURCE

This sets the stage for explaining the deeper puzzles of the open

source process in Chapter 5.

The Software “Problem”

To build complex software is a difficult and exacting task. The classic

description of what this feels like comes from Frederick Brooks, who

likened large-scale software engineering to a prehistoric tar pit:

One sees dinosaurs, mammoths, and sabertoothed tigers struggling

against the grip of the tar. The fiercer the struggle, the more entan-

gling the tar, and no beast is so strong or so skillful but that he ulti-

mately sinks. Large-system programming has over the past decade been

such a tar pit, and many great and powerful beasts have thrashed vio-

lently in it . . . Large and small, massive or wiry, team after team has be-

come entangled in the tar. No one thing seems to cause the difficulty—

any particular paw can be pulled away. But the accumulation of simul-

taneous and interacting factors brings slower and slower motion.4

In 1986 Brooks chaired a Defense Science Study Board project on mili-

tary software. Afterward he wrote a paper entitled “No Silver Bullet:

Essence and Accidents of Software Engineering.”5 This paper, while

controversial, still stands as the most eloquent statement of the under-

lying structure of the software engineering problem—and why it is so

hard to improve. Brooks uses Aristotelian language to separate two

kinds of problems in software engineering. Essence is the difficulty in-

herent in the structure of the problem. Accident includes difficulties

that in any particular setting go along with the production of software,

or mistakes that happen but are not inherent to the nature of the task.

Brooks’s key argument is that the fundamental challenge of soft-

ware lies in the essence, not in the accidents. The essence is the con-

ceptual work of building the interlocking concepts that lie behind any

particular implementation—data sets, relationships among data, the

algorithms, the invocations of functions. To implement this essence by

writing working code is hard, to be sure. But those kinds of practical

coding difficulties, for Brooks, fall into the realm of accident. Acci-

dents can be fixed or at least made less common by evolving the pro-

cess. But software will remain hard to write because “the complexity of

software is an essential property not an accidental one.”6

If this is correct, simple models fail because the complexities at the

What Is Open Source and How Does It Work? • 57

core of the task cannot be abstracted away. A physicist dealing with

complexity has the advantage of being able to assume that models can

be built around unifying physical principles. The software engineer

cannot make that assumption. Einstein said that there must be simpli-

fiable explanations of nature because God is not arbitrary. But there is

no such stricture for software engineering because the complexity at

play is “arbitrary complexity, forced without rhyme or reason by the

many human institutions and systems to which [the programmer’s] in-

terfaces must conform.”7

To make matters worse, humans use software in an extraordinarily

diverse technological and cultural matrix that changes almost continu-

ously. If an auto engineer has to envision the range of conditions un-

der which people will drive a car, the software engineer is faced with a

harder task, if for no other reason than that much of the technological

environment in which a piece of software will be used has not even

been invented at the moment that the software is being written. High-

ways and bridges, in contrast, don’t change that fast, and they are not

configurable by users in the way that software is.

Another aspect of this complexity is that software is invisible and,

more importantly, “unvisualizable.” Brooks means that software is hard

or perhaps even impossible to represent in a spatial or geographical

model. Silicon chips have wiring diagrams that are incredibly intricate

but at least they exist on one plane. Software structure exists on multi-

ple logical planes, superimposed on one another. Software is concep-

tually more like a complex poem or great novel in which different

kinds of flows coexist across different dimensions. To represent any

one of these flows is possible. You can diagram the syntax of a poem or

write an essay about an underlying theme. To represent all at once—

and to do so in a way that communicates effectively to an outside

observer—is a problem of a different order of magnitude, perhaps in-

soluble.

That is why great poetry is almost always the product of a single cre-

ative mind. It can be helped along, of course. Design practices and

general rules can be and are taught to aspiring poets, and to aspiring

software designers. Technology provides both with tools to assist their

work, from word processors to elegant test programs for software mod-

ules. But technology cannot now, and will not in the foreseeable fu-

ture, solve the problem of creativity and innovation in nondecompos-

58 • THE SUCCESS OF OPEN SOURCE

able complex systems. The essence of software design, like the writing

of poetry, is a creative process. The role of technology and organiza-

tion is to liberate that creativity to the greatest extent possible and to

facilitate its translation into working code. Neither new technology

nor a “better” division of labor can replace the creative essence that

drives the project.

Hierarchical and Open Source “Solutions” as Ideal Types

There is more than one way to skin this cat.8 The fairy tale solution

would be to place a brilliant young eccentric in an isolated basement

room with a computer and lots of coffee and let her write software un-

til the point of exhaustion. In fact a great deal of software does get

written in exactly this way. But most of this software is used only by the

author or perhaps a few friends. And there are inherent limits to soft-

ware that can be built by one or two people. One person can write a

utility, a device driver, or some other small program in a matter of days

or weeks. A modern operating system, however, consists of millions of

lines of code. And scale is not the only issue. Like a modern car, with

its engine, brakes, electronics, hydraulics, and so on, software is made

up of components that call on very different kinds of expertise. Yet the

result must be conceptually coherent to the single mind of the user.

One way or another, the software problem leads inexorably to some

kind of division of labor. Putting large numbers of people into the cor-

rect slots in a division of labor is important. But getting the numbers of

people right and putting them in the right places is really a secondary

problem. The primary question is, What kind of division of labor, orga-
nized how?

In 1971 Harlan Mills put forward an evocative image in response to

this question. It was obvious to him that a large software project must

be broken up so separate teams can manage discrete pieces. The key

to Mills’s argument was that each team should be organized as a surgi-

cal team, not a hog-butchering team. In other words, “instead of each

team member cutting away on the problem, one does the cutting and

the others give him every support that will enhance his effectiveness

and productivity.”9

Frederick Brooks took this argument a step further with an analogy

to the building of medieval cathedrals. But Brooks meant a particular

What Is Open Source and How Does It Work? • 59

kind of medieval cathedral. He was talking about Reims, not Chartres.

In fact most European cathedrals are a mishmash of architectural de-

signs and styles, built at different times according to the aesthetic of

their designers. Norman transepts may abut a Gothic nave. These con-

tradictions produce a certain kind of splendor in a cathedral, because

the human eye can move with ease across boundaries and find beauty

in the dissonance. Data cannot do this, which is why similar design

contradictions are a nightmare in software.

The key to software design, for Brooks, is conceptual integrity, the

equivalent of architectural unity that comes from a master plan. His ar-

gument about the appropriate division of labor follows directly from

this commitment. Conceptual integrity “dictates that the design must

proceed from one mind, or from a very small number of agreeing res-

onant minds.”10 Only a single great mind can produce the design for a

great cathedral. The division of labor for coding (in other words,

building the cathedral) then proceeds along two clear lines.

First, draw a separation as cleanly as possible between architecture

and implementation. The architect designs the system, creates the

master plan, and owns the mental model of the intended outcome.

The architect is also responsible for dividing the system into subsys-

tems, each of which can be implemented as independently as possible.

Second, structure implementation teams like surgical teams, as Mills

argued. Each surgical team has its own subarchitect who is responsible

for organizing the implementation team that works under him (just as

a chief surgeon assigns tasks in the operating room). The process, in

principle, can advance recursively into a multilayered division of labor,

depending on the complexity of the project that the master architect

is trying to construct.

Stripped to its core, the Brooks approach is really a slightly modified

Fordist style of industrial organization. That is no criticism: Fordist di-

visions of labor are incredibly successful at building certain kinds of

products. A clear division between architecture and implementation,

segmentation of tasks into subsystems that are then supposed to “snap”

together, reporting hierarchies with command and control from

above, are all familiar techniques of industrial organization. And they

all fit well within a traditional sketch of an ideal-typical corporate hier-

archy. An authority assigns tasks, monitors for performance, and com-

pensates according to measurable indicators of execution.

60 • THE SUCCESS OF OPEN SOURCE

This is not nearly a perfect solution, even in theory. The dilemmas

are familiar. Monitoring and evaluating the performance of a complex

task like writing code is expensive and imperfect. Proxy measures of

achievement are hard to come by. Quality is as important (often more

important) than quantity, and simple measures are as likely to be mis-

leading as informative (someone who produces a large number of

lines of code may be demonstrating poor implementation skills, not

productivity). Shirking within teams and free riding on the efforts of

others is hard to isolate. One person’s good efforts can be rendered in-

effective by another person’s failure to produce.

Much of the software engineering and organization literature fo-

cuses on ways to ameliorate at least some of these problems in practice.

The underlying notion is just like Winston Churchill’s views about de-

mocracy: Building software this way is the worst possible system except

for all the others. Improve the implementation (by removing what

Brooks called “accident”) over time and you move gradually toward a

better industrial organization for software. Substantial progress has in

fact been made in exactly this way.

But the essence of the problem according to Brooks—the concep-

tual complexity of design—will remain. This argument is now com-

monly called Brooks’s Law and it is foundational in programming lore.

The simple version of Brooks’s Law is this: Adding more manpower to

a software project that is late (behind schedule) will make the project

even later. Hence the phrase “the mythical man-month.”

What lies behind the mythical man-month is a subtle line of reason-

ing about the relationship between complex systems of meaning and

the imperfections of human communication. Brooks says that, as the

number of programmers working on a project rises (to n), the work

that gets done scales at best by n—but vulnerability to bugs scales as

the square of n. In other words, the production system tends to create

problems at a faster rate than it creates solutions.

Too many cooks spoil the broth is an old argument. What Brooks’s

Law adds is a statement about the rate at which that happens. Why does

vulnerability to bugs scale as the square of n? Brooks argues that the

square of n represents a decent estimate of the number of potential

communications paths and code interfaces between developers, and

between developers’ code bases. Human communication about com-

plex, often tacit goals and objectives is imperfect and gets more imper-

What Is Open Source and How Does It Work? • 61

fect, and at an increasing rate, as it must travel among larger numbers

of people. The complexity of technological interfaces between code

modules increases in similar geometric fashion. This is the essential

problem of software engineering. Removing Aristotelian accidents

only reduces the rate at which the underlying problem gets worse. In-

deed, as software systems evolve toward greater complexity, organiza-

tions will be challenged to keep up, running faster to stay in the same

place.

The open source process takes on this challenge from a different di-

rection. The popular image of open source as a bazaar does capture

the feeling of an ideal type. It is an evocative image. But it is analyti-

cally misleading and it is best to drop it. The key element of the open source
process, as an ideal type, is voluntary participation and voluntary selection of
tasks. Anyone can join an open source project, and anyone can leave at

any time. That is not just a free market in labor. What makes it differ-

ent from the theoretical option of exit from a corporate organization

is this: Each person is free to choose what he wishes to work on or to

contribute. There is no consciously organized or enforced division of

labor. In fact the underlying notion of a division of labor doesn’t fit

the open source process at all. Labor is distributed, certainly—it could

hardly be otherwise in projects that involve large numbers of contribu-

tors. But it is not really divided in the industrial sense of that term.

The ideal-type open source process revolves around a core code

base. The source code for that core is available freely. Anyone can ob-

tain it, usually over the Internet. And anyone can modify the code,

freely, for his or her own use. From this point the process differs

among projects, depending largely on how they are licensed. BSD-style

licenses are minimally constraining. Anyone can do almost anything

with this code, including creating from it a proprietary product that

ships without source code. The GPL is much more constraining. In es-

sence, anyone is free to do anything with GPL code except things that re-
strict the freedom of others to enjoy the same freedoms. In practice this means

that a program derived from GPL code must also be released under

the GPL with its source code.

The key to the open source process is only partly what individuals do

for themselves with the source code. It is also in what and how individ-

uals contribute back to the collective project. Again there are differ-

ences. BSD-style projects typically rest with a small team of developers

62 • THE SUCCESS OF OPEN SOURCE

who together write almost all the code for a project. Outside users may

modify the source code for their own purposes. They often report

bugs to the core team and sometimes suggest new features or ap-

proaches to problems that might be helpful. But the core develop-

ment team does not generally rely heavily on code that is written by us-

ers. There is nothing to stop an outside user from submitting code to

the core team; but in most BSD-style projects, there is no regularized

process for doing that. The BSD model is open source because the

source code is free. But as an ideal type, it is not vitally collaborative on

a very large scale, in the sense that Linux is.

The vital element of the Linux-style process is that the general user

base can and does propose what are called “check-ins” to the code.

These are not just bug reports or suggestions, but real code modifica-

tions, bug fixes, new features, and so on. The process actively encour-

ages extensions and improvements to Linux by a potentially huge

number of developers (any and all users). If there is a general princi-

ple of organization here, it is to lower the barriers to entry for individ-

uals to join the debugging and development process. As an ideal type,

the Linux process makes no meaningful distinction between users

and developers. This takes shape in part through a common debug-

ging methodology that is derived from the Free Software Foundation’s

GNU tools. It takes shape in part through impulsive debugging by

someone trying to fix a little problem that she comes across while us-

ing the software. And it takes shape in part through individuals who

decide to make debugging and developing Linux a hobby or even a vo-

cation.

But the process of developing and extending Linux is not an anar-

chic bazaar. The email discussion lists through which users share ideas

and talk about what they like and don’t like, what works and what

doesn’t, what should be done next and shouldn’t (as well as just about

everything else) do have a raucous, chaotic feel to them. Conflict is

common, even customary in these settings. Language gets heated.

There are indeed norms for the conduct of these discussions that

bound what kinds of behaviors are considered legitimate. The princi-

pal norm is to say what you think and not be shy about disagreeing

with what others, including Linus Torvalds, might think. Yet the proce-

dure for reviewing submissions of code and deciding whether a sub-

mission gets incorporated into the core code base of Linux is ordered

What Is Open Source and How Does It Work? • 63

and methodical. A user-programmer who submits a patch for inclusion

in Linux is expected to follow a procedure of testing and evaluation on

his own, and with a small number of colleagues, before submitting the

patch for review. The submission then travels up through a hierarchy

of gatekeepers or maintainers who are responsible for a particular part

of the code base, lieutenants who oversee larger sections of code, and

eventually Linus Torvalds, who de facto makes the final decision for all

official code modifications.

This hierarchy has evolved and grown more elaborate over time as

Linux itself has grown. Smaller open source projects have simpler and

often more informal decision-making systems. Apache, on the other

hand, has a formal de facto constitution that is built around a commit-

tee with explicit voting rules for approval of new code. The big ques-

tion is, Why are these systems stable? Why do people obey the rules

and accept decisions that go against their own work?

In fact, sometimes they don’t. And in an open source setting there is

no reason why they must. An individual whose code patch gets rejected

always has a clear alternative path. He can take the core code, incorpo-

rate the patch, set the package up as a “new” open source project, and

invite others to leave the main project and join his. This is called “fork-

ing the code base” or simply “forking.” Open source guarantees this

right—in fact, some developers believe that the essential freedom of

free software is precisely the right to fork the code at any time.

In practice, major forks are rare. In practice, most participants in

open source projects follow the rules most of the time. There is a lot to

explain here. The point of this discussion is simply to set the context

for that explanatory challenge.

Decentralized voluntary cooperation is always an interesting phe-

nomenon in human affairs. For some social scientists, it is almost foun-

dational. For studies of how the Internet may change political econ-

omy and society by enabling new kinds of communities and other

cooperative institutions, it is crucial. The problem certainly gets more

interesting when it involves highly motivated and strongly driven indi-

viduals who clearly have attractive options to exit any particular coop-

erative arrangement.

Brooks’s Law adds a particularly challenging dimension to the prob-

lem as it manifests in software development. To explain the open

source process, we need a compelling story about why individuals con-

64 • THE SUCCESS OF OPEN SOURCE

tribute time and effort to write code that they do not copyright and for

which they will not be directly compensated for a collective project

whose benefits are nonexcludable. In other words, any individual can

take from the project without contributing in return.

But explaining individual motivations does not explain the success

of open source. In a peculiar way, it makes the problem of explanation

harder. If Brooks is even partially right about the nature of complexity, then the
success of open source cannot simply depend on getting more people or even the
“right” people to contribute to the project. It depends also, and crucially, on how
those people are organized.

The reason a great poem is written by a single person and not by

thousands of contributors from all over the world is not that it would

be hard to get those thousands of people to contribute words to the

collective poem, but that those words would not add up to anything

meaningful. They would simply be a mess of uncoordinated words

that no one would see as a poem (certainly not a great poem). Eric

Raymond famously said about the open source development process,

“with enough eyeballs all bugs are shallow.”11 Whether he is right de-

pends on how those eyeballs are organized.

What do we know, descriptively, about the important parameters to

help answer these questions?

Who Participates in the Open Source Process?

I would like to start with a clean number that decently estimates how

many people participate in open source development. It’s not possible

to do that, and the problem is not just about measurement. It’s about

conceptualization: Should we define as an open source developer a

high school student who modifies some source code for her unusual

configuration at home, or reports a bug to one of thousands of small

open source projects listed on the website SourceForge.net? Should

we limit the definition to people who contribute a certain threshold

number of lines of code to a major project like Linux or Apache?

Rather than try to define a priori the conceptual boundaries, I think it

is better for now to remain agnostic and look broadly at what kinds of

data are available, to give a more textured view of the size and charac-

teristics of an (evolving and dynamic) open source community.

SourceForge is a major website for open source development proj-

What Is Open Source and How Does It Work? • 65

ects that provides a set of tools to developers. It is also a virtual hang-

out, a place that open source developers visit regularly to see what

kinds of projects are evolving and who is doing what in specific ar-

eas.12 In July 2001 SourceForge reported 23,300 discrete projects and

208,141 registered users; in September 2003 there were 67,400 proj-

ects and over 600,000 registered users. Most of these projects are very

small, both in technical scope and in the number of people working

on them. Some are essentially dead in the water or abandoned. With

these caveats, the numbers are suggestive of the scope of activity in at

least one very active part of the open source community.

Counter.li.org is an effort to count the number of active Linux users

over time. It relies on voluntary registration for one bottom line mea-

sure, but also tries to estimate the size of the community by a variety of

techniques that vary in sophistication and plausibility. The range of es-

timates is huge, with a consensus guesstimate of about 18 million as of

May 2003.13 This roughly tracks estimates made by Red Hat Linux, the

major commercial supplier of packaged versions of the Linux operat-

ing system (and thus the company most highly motivated to generate a

serious assessment of market size). Even if this number is right in some

very broad sense, it says nothing about the scope of contributions.

Only a subset of users contributes in significant ways to the develop-

ment of Linux.

There are several large research efforts, both completed and ongo-

ing, aimed at collecting more precise statistics about active contribu-

tions and contributors to open source software development.14 Proba-

bly the most ambitious effort is the Orbiten Free Software Survey,

carried out over eighteen months in 1999 and 2000 by Rishab Ghosh

and Vipul Ved Prakash.15 Prakash wrote a software tool called CODD

that tries to automate the process of identifying credits in source

code.16 He and Ghosh ran this tool across an important but still quite

limited subset of open source projects.17 Within this subset, making up

about 25 million lines of code, they found 3,149 discrete open source

software projects and 12,706 identifiable developers. Another 790 de-

velopers were unidentifiable within the data.

Many other efforts to collect raw data on developers focus spe-

cifically on Linux. These studies show that the community of develop-

ers contributing to Linux is geographically far flung, extremely large,

and notably international. It has been so nearly from the start of the

66 • THE SUCCESS OF OPEN SOURCE

project. The first official “credits file” (which lists the major contribu-

tors to the project) was released with Linux version 1.0 in March 1994.

This file included seventy-eight individual developers from twelve

countries and two developers whose home countries were not dis-

closed. Ilka Tuomi adjusted these numbers to take account of the dif-

ferent sizes of home countries to show the disproportionate influence

of Europeans and the relatively small contribution of developers living

in the United States (Figure 1).18

Of the major developers listed in the credits file for the 2.3.51 re-

lease (March 2000), the United States had the largest absolute num-

ber, but Finland was still by far the most active on a per capita basis.

Thirty-one countries were represented. Clearly, the international as-

pect of Linux development has not decreased over time or with the in-

creasing notoriety of the software (Figure 2).

Gwendolyn Lee and Robert Cole looked at the institutional affilia-

tion of contributors to the Linux kernel from the 2.2.14 credits file.19

The top-level domain of a contributor’s email address (such as .org,

What Is Open Source and How Does It Work? • 67

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Austr
al
ia

Bel
gi

um

Fi
nla

nd

Fr
an

ce

Sp
ai
n

P
er

m
il

li
o

n
in

h
ab

it
an

ts

Can
ad

a

Den
m

ar
k

Ger
m

an
y

N
et

her
la
nds

Sw
ed

en U
K

U
.S

.A

Country

Figure 1 Linux code authors listed in first credits file (1994), concentration

by country.

68 • THE SUCCESS OF OPEN SOURCE

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8 Arg

entin
a Austr

ali
a Austr
ia Belgium

Braz
il Can

ad
a Cro

ati
a

Cze
ch

Republic Denmark
Finlan

d Fran
ce Germ

an
y

HongKong Hungar
y Ire

lan
d

Ita
ly

Jap
an

Mexico
Neth

erla
nds

Norw
ay

Polan
d

Republic
ofChina Roman

ia
Russi

a
Spain

Sweden
Switz

erla
nd
UK Ukrai
ne U.S.A

.

13
-M

ar
-9

4

11
-M

ay
-9

9

11
-M

ar
-0

0

Permillioninhabitants

C
o

u
n

tr
y

Fi
gu

re
2

L
in

u
x

co
d

e
au

th
o

rs
li

st
ed

in
cr

ed
it

s
fil

es
,
co

n
ce

n
tr

at
io

n
o

ve
r

ti
m

e.

.com, or .edu) is an imperfect measure of institutional affiliation, but

it is a reasonable proxy.20 Their observation that more developers have

.com than .edu addresses at least calls into question another common

perception. Academics and computer science students (who presum-

ably write code for research and teaching) may not dominate the open

source process (see Figure 3).

But these numbers count only the major contributors to the Linux

kernel. Other active developers report and patch bugs, write small util-

ities and other applications, and contribute in less elaborate but still

important ways to the project. The credit for these kinds of contribu-

tions is given in change logs and source code comments, far too many

to read and count in a serious way. It is a reasonable guess that there

are at least several thousand, and probably in the tens of thousands, of

developers who make these smaller contributions to Linux.21

A 1999 assessment of these so-called application contributors used

Linux software maps (LSMs) located at University of North Carolina’s

Metalab, one of the oldest and most comprehensive repository sites

for Linux software.22 LSMs are small descriptive metadata files that

What Is Open Source and How Does It Work? • 69

0

5

10

15

20

25

30

35

40

45

50

.com .edu .org .net .gov

C
o

u
n

t

Top-level domain

Figure 3 Linux code authors in 2.2.14 credits file, by top-level domain of

email address.

many (but not all) developers use to announce their new software and

describe its functions.23 In September 1999 the Metalab archives con-

tained 4,633 LSMs. The distribution among top-level domains rein-

forces the results of the kernel surveys about geographic distribution

of contributors, but shows an even more pronounced European influ-

ence (see Figure 4).

In fact 37 percent of the LSMs have email suffixes representing Eu-

ropean countries (.de for Germany, .fr for France, and so on) com-

pared to the 23 percent that have .com suffixes. And this method

undercounts European participation because at least some authors

with .com and other addresses would be located in Europe.

Each of these studies attempts to measure the relative concentration

of contributions. In any collective project, not all contributors work

equally hard or make contributions that are equally important, and

those two variables are not necessarily correlated. Anyone who has

worked or played on a team knows the apocryphal 80–20 rule: 80 per-

cent of the work seems to be done by 20 percent of the people.

Although the studies use measures like lines of code or gross num-

bers of submissions as (deficient) proxies for the value of an individ-

70 • THE SUCCESS OF OPEN SOURCE

0

100

200

300

400

500

600

700

800

900

.com .de .edu .net .org .uk .nl .au .fr .it .ca .se .fi .at .cz other

Top-level domain

L
in

u
x

so
ft

w
ar

e
m

ap
en

tr
ie

s

Figure 4 Linux software map (LSM) entries, by top-level domain of email

address.

ual’s contributions, the open source process is not seemingly much

different in this respect from other team efforts. The Orbiten Free

Software Survey found that the most prolific 10 percent of developers

are credited with about 72 percent of the code; the second decile con-

tributes another 9 percent. In fact the top ten individual authors are

responsible for almost 20 percent of the total code. Authors tend to fo-

cus their attention tightly: About 90 percent of software developers

participate in only one or two discrete projects; a small fraction (about

1.8 percent) contributes to six or more projects. The UNC Metalab

data shows a similar distribution of effort: Large numbers of LSM au-

thors (about 91 percent) have contributed only one or two items to

the archive, with only a few developers (about 1 percent) contributing

more than six.24 A more recent study on the code repository for the

GNOME project (a desktop environment that runs on top of an oper-

ating system) finds similar patterns—a relatively small inner circle of

developers who contribute a majority of the code and are the most ac-

tive participants in the email list discussions of the project, surrounded

by a larger group of less active coders and discussion group partici-

pants.25

This data certainly tempers the image of a babbling anarchic bazaar.

Open source is a distributed production process, but clearly the distri-

bution is lumpy and somewhat top heavy. The data on Linux is consis-

tent with an image of several hundreds of central members who do

most of the coding, and several thousands of comparatively peripheral

participants who contribute in more indirect and sporadic fashion.

For the most part contributors work on one or a very small number of

programs, rather than spread their efforts more widely over a broad

range of projects. It is important to remember the caveats. Each survey

relies on a limited sample. More important, none of this data speaks

directly to the relative importance of any particular contribution or

even the level of effort that any individual puts in. One could in a few

days write many lines of relatively simple code to solve a shallow bug,

or spend weeks working on a small piece of code that solves a very dif-

ficult problem and removes a major roadblock from a project. Still, the

data does say something about the demography of the open source

community, including its profoundly international nature and its su-

perficial (at least) resemblance to many other communities in which

the 80–20 rule seems to apply.

What Is Open Source and How Does It Work? • 71

The data also suggests tentative hypotheses about why particular in-

dividuals write open source software. For example, the prevalence of

developers with .com addresses may indicate that many people write

open source code in the course of their everyday work. This possibility

is consistent with the narrative that many open source developers tell

about themselves: People within commercial organizations like to use

open source software because they can customize it for their needs

and configurations. These in-house developers write bug fixes and

other patches for their own work and then contribute that code back

to the community for others to use in similar settings.

Several surveys have tested this story as well as other claims about

what motivates individuals to contribute to the open source process.

Again there are serious data problems, not the least of which follow

from the uncertain boundaries around the overall population (and

subpopulations) of open source developers from whom these surveys

sample. The more important caveat is the manner in which surveys

about individual motivations are embedded, deeply, in the explana-

tory problem that the researcher believes should guide the study of

open source. Put simply, if you accept the simple collective action story

as capturing the problem to be solved, you then frame the question of

motivation in terms of what drives individuals to make contributions.

You design a survey instrument to ask questions aimed at eliciting mo-

tivations that would counter the behavioral driving forces (in other

words, egoistic rationality) that are assumed to set up the collective ac-

tion problem in the first place. The survey findings about motivations

(however inexact they may be as data) thus are linked to assumptions

about explanation in a profound, conceptual way. As I have said, the

collective action problematic is too narrow to capture the most inter-

esting puzzles about open source and thus I do not present that data in

this chapter. For this reason I do not want to present survey data about

individual motivations in this chapter, which is dedicated to describ-

ing the open source process. That survey data is best understood in

the context of contending explanatory claims, and I present both in

Chapter 5.

What Do They Do?

The conventional language of industrial-era economics identifies pro-

ducers and consumers, supply and demand. The open source process

72 • THE SUCCESS OF OPEN SOURCE

scrambles these categories. Open source software users are not con-

sumers in the conventional sense. By that I mean more than the sim-

ple fact that no one consumes software in the sense that one consumes

a loaf of bread because software can be copied an infinite number of

times at no cost. I mean, more fundamentally, that users integrate into

the production process itself in a profound way.

Not all users do this, of course. You can choose to consume open

source software in the same way as you consume a copy of Windows.

But with open source, that is a voluntary decision, not one that is made

for you in the technology and legal protections around the product.

On the contrary, the technology and the licensing provisions around

open source positively encourage users to be active participants in the

process. Many do so, and at many different levels.

The logic of what open source user-programmers do did not emerge

from abstract theory. No one deduced a set of necessary tasks or pro-

cedures from a formal argument about how to sustain large-scale, de-

centralized collaboration. It was a game of trial and error—but a game

that was played out by people who had a deep and fine-grained, if im-

plicit, understanding of the texture of the community they were going

to mobilize. Over time, observers studied the behavior as it played out

in practice and tried to characterize its key features. Drawing heavily

on Eric Raymond’s keen analysis supplemented by a set of interviews

and my own observations, I offer eight general principles that capture

the essence of what people do in the open source process.

1. make it interesting and make sure it happens. Open

source developers choose to participate and they choose which tasks to

take on. There is naturally, then, a bias toward tasks that people find

interesting, significant and “cool,” in the community vernacular. Any-

one who has done programming knows that much of the work in-

volved in writing (and particularly in maintaining) code is boring,

grunt work.

Open source developers clearly look for cool opportunities to create

new and exciting functions or do hard things in an elegant way. They

also look for opportunities to learn and to improve skills. These are

two different kinds of benefits to the volunteer, and either one (or

some combination of both) is balanced against the costs. Given a large

base of volunteers with diverse interests and expertise, a project leader

can hope that someone “out there” will find a particular task either

What Is Open Source and How Does It Work? • 73

cool or valuable as a learning experience relative to the time and en-

ergy costs, and choose to take it on. Project leaders often engage in

friendly marketing, explaining to the “audience” why it would be a

great thing for someone to do x, y, or z. A charismatic leader like

Torvalds can go a step further, acknowledging (as he often does) that

a particular task is not very interesting but someone really should step

up to the plate and do it. There are implied benefits within the com-

munity for taking on these kinds of tasks.

Volunteers, regardless of why they choose to volunteer, don’t like to

see their efforts dissipated. A cool program is really only as cool as oth-

ers say it is; and for the developer to get that kind of feedback, the pro-

gram needs to be used. Even if someone takes on a task primarily for

the sake of her individual learning, she gains additional satisfaction if

the task contributes to something more than her own human capital.

These may be side benefits of a sort; but if they were not important,

individuals would go to problem sets in textbooks rather than to

SourceForge.net.

This sets up an interesting problem for a project leader, who needs

to search out a workable balance between exciting challenges and a

credible assurance that the challenges will indeed be met. User-pro-

grammers look for signals that projects will generate significant prod-

ucts rather than turn into evolutionary dead ends. They want interest-

ing puzzles to solve along the way.

2. scratch an itch. Public radio fund-raisers know intuitively

what economists have formally argued: One way to get voluntary con-

tributions is to link the contribution to a private good. Hence KQED

offers you a T-shirt in “exchange” for your membership dollars. The

open source process knows this as well. Most computer programmers

love T-shirts. But what they love even more is a solution to a tangible

problem that they face in their immediate environment. This is the

“itch” that the developer feels, and scratching it is a reliable source of

voluntary behavior.

To understand just how important this is, you need to understand

something that outsiders generally do not know about the structure of

the software industry. Software code written for sale outside the enter-

prise that writes it is just the tip of a huge programming iceberg, the

rest of which is invisible to most people. Mainstream estimates are that

75 percent of all code is written in-house, for in-house use, and not

74 • THE SUCCESS OF OPEN SOURCE

sold by software vendors.26 For example, NASA engineers spend a

great deal of time writing software to orient the solar panels on the

space shuttle. Most software is like this—beneath the surface, in-house

code built for financial and database system customizations, technical

utilities specific to a particular setting, embedded code for microchip-

driven toasters, and so on. And most of what programmers get paid to

do is debugging and maintaining this code as the environment in

which it is being used evolves.

Scratching an itch is usually about solving one of these immediate

and tangible problems in an enterprise setting. Or it might be about a

computer hobbyist at home trying to get a particular application to

talk to a particular device on that person’s uniquely configured hard-

ware. Open source developers scratch these itches, just like all pro-

grammers do. What is different about the open source process is that

the community has developed a system for tapping into this vast reser-

voir of work and organizing it in a useful way so at least some of it can

be brought back in to benefit collaborative projects. This system blurs

the distinction between a private good and a public good and leads di-

rectly to the third principle.

3. minimize how many times you have to reinvent the
wheel. A good programmer is “lazy like a fox.” Because it is so hard

and time consuming to write good code, the lazy fox is always search-

ing for efficiencies. Open source developers have a particularly strong

incentive to take this approach because they are not compensated di-

rectly for their time. The last thing a programmer, particularly a volun-

teer programmer, wants to do is build from scratch a solution to a

problem that someone else has already solved or come close to solving.

Open source developers have two major advantages here. First, the

code moves freely across corporate boundaries. A huge repository of

code gets bigger as more developers use it and contribute to it. The

second advantage is at least as important. Developers know that source

code released under an open source license like the GPL will always be

available to them. They don’t have to worry about creating dependen-

cies on a code supplier that might go bankrupt, disappear down the

road, or change the terms of access. They don’t have to worry about a

single supplier trying to exploit a lock-in by later enclosing code or

raising price barriers.

Developers working in proprietary corporate settings often com-

What Is Open Source and How Does It Work? • 75

plain about the inefficiencies associated with what they call the NIH

(not invented here) syndrome. They perceive corporate hierarchies as

irrational in their desire to own or at least build for themselves code

that they know exists in other corporate hierarchies. But in the context

of proprietary software, the NIH syndrome is not necessarily irratio-

nal, because dependence on source code that someone else owns can

create exploitable dependencies over a very long term.27 Open source

developers are free of this constraint, what Oliver Williamson calls the

“hold-up” problem. As a result, they do not have to reinvent the wheel

quite so many times.

4. solve problems through parallel work processes
whenever possible. Computer scientist Danny Hillis has said,

“There are only two ways we know of to make extremely complicated

things. One is by engineering, and the other is evolution.”28 A software

bug fix or a desired feature in a complex program is often an ex-

tremely complicated thing. What do open source developers do to

“make” it?

Frederick Brooks’s description of the traditional software develop-

ment process relies on the engineering archetype. The architect sets

the definition of the problem that the hierarchy below her is going to

solve. She plots out a conceptual course (or perhaps more than one

potential course) to a solution and then divides the implementation

work among a certain number of carefully selected people. Three de-

cisions are critical. What route (or routes) is most promising to take to-

ward a solution? How many people need to be tasked with that job?

And which people?

Open source developers rely on the evolution archetype. In some

cases, but not all, a project leader does set the effective definition of

the problem that needs to be solved. Regardless, if it is an important

problem, it will probably attract many different people or perhaps

teams of people to work on it. They will work in many different places

at the same time, and hence in parallel. They will experiment with dif-

ferent routes to a resolution. And they will produce a number of po-

tential solutions. At some point a selection mechanism (which is messy

and anything but “natural selection”) weeds out some paths and con-

centrates on others. This evolutionary archetype works through volun-

tary parallel processing. No central authority decides how many paths

76 • THE SUCCESS OF OPEN SOURCE

ought to be tested, how many people ought to be placed on each path,

or which people have the most appropriate skills for which tasks.

Remember that these are archetypes and real-world development

processes are not so starkly differentiated. It’s also important to re-

member that both archetypes contain their own inefficiencies. Engi-

neering is great if the chief engineer makes all the right decisions. Par-

allel problem solving at best is messy, like evolution. It is not possible

to say a priori which is more efficient and less wasteful for a given set-

ting. The point here is that the open source process enables voluntary

parallel processing by as many (or as few) developers as the problem

can attract, developers who make their own choices about where and

how to allocate their resources.

5. leverage the law of large numbers. The key to field test-

ing products such as washing machines or cars is to try out the product

in as many different settings as possible. Field testers try to predict all

the ways in which people will use the product and then test whether

the product works for those applications.

The field-testing problem is orders of magnitude more complicated

for software and different in kind than it is for a car—but not only be-

cause the hardware on which the code must run changes so much

faster than roads and bridges. The issue is that even a moderately com-

plex program has a functionally infinite number of paths through the

code. Only some tiny proportion of these paths will be generated by

any particular user or field-testing program. Prediction is actually the

enemy in software testing. The key is to generate patterns of use that

are inherently unpredictable by the developers. As Paul Vixie puts it,

“The essence of field testing is lack of rigor.”29

The more bugs you generate and the sooner you generate them, the

better your chances are that you will fix a decent proportion of what

will go wrong once the software is in general use. Hence the benefit of

large numbers. Proprietary software companies are constrained in this

game. Of course they engage in beta testing, or prerelease of an early

version to testers and users who are asked to report back on bugs. But

companies face a very tricky calculation: How buggy a piece of soft-

ware are they willing to put out for public assessment? From a devel-

oper’s perspective, the earlier the beta is, the better. From a marketer’s

perspective, buggy software is a nightmare. The cost to a company’s

What Is Open Source and How Does It Work? • 77

reputation as a builder of reliable software can be prohibitive. Cus-

tomers expect a finished or almost finished product. (Academics un-

derstand this calculation all too well. If I were to distribute early drafts

of scholarly articles to a broad community of readers to get a diverse

set of critical comments, I would quickly destroy my reputation. In-

stead I give them to a few close friends; but their base of knowledge

and expertise tends to be parallel to mine, so what I get in feedback

(my beta test result) is narrow and ultimately less useful.)30

The open source process has a distinctly different culture that lever-

ages the law of large numbers and exploits the strength of weak ties.

The expectations are different: In a real sense open source software is

always in beta. The difference in part is the availability of the source

code, which empowers continual modification. There is also a collec-

tive perception of the open source software process as ongoing re-

search. Open source developers think of themselves as engaging in a

continuing research project in which bugs are challenges (not prob-

lems) and puzzles (not weaknesses).

As with other evolutionary processes, large numbers and diversity

should accelerate adaptation to the environment—in this case, the

identification and the fixing of bugs. Again, “with enough eyeballs all

bugs are shallow.” What this really means is four things. First, different

people doing different things with the software will surface more bugs,

and that is good. Second, the bugs will be characterized and that char-

acterization communicated effectively to a large group of possible “fix-

ers.” Third, the fix will be relatively obvious to someone. And fourth,

that fix can be communicated back and integrated efficiently into the

core of the project.

Large numbers require organization to work effectively. This princi-

ple becomes more apparent when you take into account the observa-

tion, common among software developers, that the person who finds a

bug and the person who fixes it are usually not the same person. There

are probably interesting psychological reasons why that tends to be

true, but the observation is an a priori argument for the desirability

and relative efficacy of parallel debugging. Of course this approach

also vastly increases organizational demands on the software develop-

ment process.

6. document what you do. Source code is readable, but that

does not mean it is easy to read. In a sufficiently complex program,

78 • THE SUCCESS OF OPEN SOURCE

even excellent code may not always be transparent, in terms of what

the writer was trying to achieve and why. Like a complex set of blue-

prints, good documentation explains what the designer was thinking

and how the pieces of the design are supposed to fit together. Good

documentation takes time and energy. It is often boring and has al-

most no immediate rewards. The incentives for a programmer to care-

fully document code are mainly to help others and to ensure that fu-

ture developers understand what functions a particular piece of code

plays in the larger scheme. In corporate settings detailed documenta-

tion tends to carry a low priority relative to more immediate tasks.

Much of the communication about code happens in less formal set-

tings in which exchange of tacit knowledge substitutes, at least in the

short term, for strict documentation.

Open source developers, in contrast, have to rely more heavily on

good documentation. A voluntary decentralized distribution of labor

could not work without it. Potential user-programmers, connected in

most cases only by bandwidth, need to be able to understand in depth

the nature of a task they might choose to take on. Members of this

community understand that documentation is a key means of lowering

the barriers to entry for user-programmers, particularly those whom

they will never meet. An additional incentive comes from the knowl-

edge that open source code will be available for people to use and

work with “forever.” Because code is nearly certain to outlive the devel-

oper (or at least to outlive the developer’s interest in that specific proj-

ect), documentation is a means of transferring what the author knows

across time as well as space.

But reality is not so generous. In fact open source developers are not

always good at documentation, and some of the reasons (in particular,

time pressure) are the same as what developers face in a proprietary

setting. The culture of open source programming historically has had

an intimate relationship to documentation—and like most intimate re-

lationships, it is complicated. In the early days of Unix, programmers

learned about the system by playing with it and then talking to Dennis

Ritchie or Ken Thompson. Obviously, this approach didn’t scale; and

as Unix grew in popularity, documentation became increasingly im-

portant. Developers’ documentation of bugs as well as features and

processes eventually became a fundamental principle of Unix and one

that was quite novel at the time. Documentation forces programmers

to think clearly about what it is they are trying to do. Rewriting code so

What Is Open Source and How Does It Work? • 79

it is easier to document, as Ritchie said, is quite characteristic of the

Unix culture. Of course, documentation is also a vital part of the scien-

tific, research-oriented tradition in which replicability of methods, as

well as results, is considered essential.

7. release early and release often. User-programmers need

to see and work with frequent iterations of software code to leverage

fully the potential of the open source process. The evolutionary arche-

type is not just about voluntary parallel processing among geographi-

cally distributed developers; it is also about accelerating the turnover

of generations so the rate of error correction can multiply. (Evolu-

tionary biologists know this kind of argument well. Bacteria evolve as

quickly as they do for two reasons: their large number and the speed

with which they reproduce. The first creates a diversity of variation and

is the substrate for natural selection; the second is the mechanism for

“locking in” to the genetic code that works well and getting rid of what

does not.) The open source process in principle mimics this evolution-

ary strategy, with a feedback and update cycle (at least for larger proj-

ects) that is an order of magnitude faster than most commercial soft-

ware projects. In the early days of Linux, for example, there were often

new releases of the kernel on a weekly basis, and sometimes even daily.

But while rapid turnover of generations is tolerable for popula-

tions of bacteria (because bacteria can’t complain about it), a similar

kind of evolutionary process would not be acceptable in software.

Rapid evolution is an extremely dynamic process. The vast majority of

changes that occur in an evolutionary system are highly dysfunctional
and they cause the organism to die. That is tolerable for an ecology of

bacteria, but not for the ecology of a human-oriented technological

system. Of course because changes in software are the result of design,

not random variation, a smaller percentage of them are likely to be le-

thal. But it is still true that one great software feature in an evolution-

ary “package” of 100 crashing programs would not be an acceptable

outcome of a human-oriented development process. More fundamen-

tal is that rapid evolution poses the risk of overwhelming the system

that selects among variations—and thus introducing errors more

quickly than the system can fix them. If this dynamic is set in motion, a

system can undergo very rapid deterioration toward the equivalent of

extinction through a downward evolutionary spiral.

80 • THE SUCCESS OF OPEN SOURCE

What open source developers do as individuals, does not guarantee

that this will not happen. Put differently, the evolutionary stability of

open source software is something that needs to be explained at the

macro level because it does not follow directly from the behavior of in-

dividual developers.

8. talk a lot. Peter Wayner captures something essential about

the open source process in this aphorism: How many open source de-

velopers does it take to change a light bulb? His answer is, “17. 17 to ar-

gue about the license; 17 to argue about the brain-deadedness of the

light bulb architecture; 17 to argue about a new model that encom-

passes all models of illumination and makes it simple to replace can-

dles, campfires, pilot lights, and skylights with the same easy-to-extend

mechanism; 17 to speculate about the secretive industrial conspiracy

that ensures that light bulbs will burn out frequently; 1 to finally

change the light bulb, and 16 who decide that this solution is good

enough for the time being.”31

Open source developers love to talk about what it is they are doing

and why. These discussions range from specific technical problems in

a project to general issues associated with the politics or business of

software development. The email lists for the Linux kernel are enor-

mous and bubble with activity. Beyond Linux, there are huge lists on

Slashdot, Kuro5hin, Freshmeat, and other popular websites.32 People

talk about projects in progress, about new ideas, about old bugs, about

new hardware, about the politics of antitrust suits against Microsoft; al-

most nothing seems off limits. Some of these discussions are tightly or-

ganized around a specific technical problem and are clearly aimed at

gaining consensus or defending an argument about how to proceed

with a project. Others are general opinion-venting or discussions about

the merits and demerits of the open source development process.

“Talking” among open source developers does not mean calm, po-

lite discussion. One of the common and most misleading fallacies

about the open source process is that it involves like-minded geeks

who cooperate with each other in an unproblematic way because they

agree with each other on technical grounds. Even a cursory glance at

the mailing lists shows just how wrong this concept is. Discussion is in-

deed generally grounded in a common belief that there exist technical

solutions to technical problems, and that the community can see good

What Is Open Source and How Does It Work? • 81

code for what it is. But this foundation of technical rationality is insuf-

ficient to manage some of the most important disagreements. It works

fairly well to screen out arguments that are naïve or have little techni-

cal support. And it tends to downplay abstract “good” ideas unless and

until there is some actual code to talk about. But it does not cleanly de-

fine problems, identify solutions, or (most importantly) discriminate

up front among contending strategies for solving problems.

And technical rationality hardly restricts the tone of the conversa-

tion. When open source developers disagree with each other, they do

not hold back. They express differences of opinion vehemently and

vent their frustrations with each other openly. Even by the relatively

pugnacious standards of contemporary academic discourse, the tone

of exchange is direct and the level of conflict, at least in language, is

quite high. Torvalds set the standard for this kind of behavior in Linux

mail lists when in 1992 he wrote to Andrew Tanenbaum (the author of

Minix): “Linux still beats the pants off Minix in almost all areas . . .

your job is being a professor and a researcher, that’s one hell of a good

excuse for some of the brain-damages of Minix.”33

How Do Open Source Developers Collaborate?

All complex production processes face a problem of collaboration. In-

dividuals make efforts, but they need to work together, or at least their

contributions need to work together. The open source process is no

different. To get past the boundary where the complexity of software

would be limited by the work one individual programmer can do on

his own, the development process has to implement its own principles

of collaboration. To explain the collaboration principles and mecha-

nisms of the open source process is to explain the guts of that process.

But first the problem needs to be described more accurately.

It is common to see open source collaboration explained away with

a slogan like “the invisible hand” or “self-organizing system.” But these

are not very useful descriptions and, for the most part, they obfuscate

the explanatory issue more than they illuminate it. What do they really

mean? The term “invisible hand” is a placeholder for an argument

about coordination by price signals, which is supposed to happen in

markets. The term “self-organizing system” is a placeholder for an ar-

gument about how local forces, those that act between nearby agents,

sum to global or at least greater-scale organization. When used care-

82 • THE SUCCESS OF OPEN SOURCE

lessly, both often really mean, “I don’t understand the principles of or-

ganization that facilitate collaboration.”

It is better to drop both these notions for now. I am not assuming

they are wrong. I am simply taking the position that any argument

about principles of collaboration in open source should be built from

the ground up, relying on a careful description of actual behavior

rather than assumed from abstract principles. Given that, there are

three important aspects of behavior to describe in this chapter: the use

of technology, the development of licensing schemes, and the emer-

gent similarities between the configuration of technology, and the so-

cial structures that create it.

technology is an enabler. Networking has long been an es-

sential part of the open source development process. Before com-

puter-to-computer communications became common, prototypical

open source communities grew up in spaces bounded by geography.

The main centers in the United States were Bell Labs, the MIT AI Lab,

and UC Berkeley. The density of networks really did fall off with some-

thing approximating the square of the distance from these geographic

points. Extensive sharing across physical distances was difficult, expen-

sive, and slow. It was possible for programmers to carry tapes and hard

drives full of code on buses and airplanes, which is exactly what hap-

pened, but it was not very efficient.

The Internet was the key facilitating innovation. It wiped away net-

working incompatibilities and the significance of geography, at least

for sharing code. As a result, the Internet made it possible to scale the

numbers of participants in a project. There are downsides to work-

ing together virtually: The transferring of tacit knowledge at a water

cooler is a reminder that face-to-face communication carries informa-

tion that no broadband Internet connection can.34 But the upside of

TCP/IP as a standard protocol for communication was huge because it

could scale the utility of electronic bandwidth in a way that physical

space could not. Put 25 people in a room and communication slows

down, whereas an email list can communicate with 25 people just as

quickly and cheaply as it communicates with 10 or 250. As the num-

bers scale and the network grows, the likelihood of proliferating weak

ties—that is, pulling into the process people with very different sets of

expertise and knowledge—goes up as well.

To simply share code over the Internet became a seamless process.

What Is Open Source and How Does It Work? • 83

As bandwidth increased over time, the Internet also enabled easy

access to shared technical tools, such as bug databases and code-

versioning systems, that further reduced the barriers to entry for user-

programmers.

The more complicated issues, such as communication about the

goals of a project or working out disagreements over directions to

take, are not seamless over the Internet. In principle the Internet

ought to reduce the costs (in a broad sense) of coordinating by discus-

sion and argumentation rather than by price or corporate authority. In

practice there is really no way to measure the overall impact because

the costs are paid in such different currencies. What practice does re-

veal is that open source developers make enormous use of Internet-

enabled communications to coordinate their behavior.

licensing schemes as social structure. Another pernicious

myth about open source developers is that they are hostile to the con-

cept of intellectual property rights. Actually, open source developers

are some of the most vehement defenders of intellectual property

rights. Rarely do these developers simply put their software in the pub-

lic domain, which means renouncing copyright and allowing anyone

to do anything with their work.35 Open source collaboration depends

on an explicit intellectual property regime, codified in a series of li-

censes. It is, however, a regime built around a set of assumptions and

goals that are different from those of mainstream intellectual property

rights thinking. The principal goal of the open source intellectual

property regime is to maximize the ongoing use, growth, develop-

ment, and distribution of free software. To achieve that goal, this re-

gime shifts the fundamental optic of intellectual property rights away

from protecting the prerogatives of an author toward protecting the

prerogatives of generations of users.

The basic assumptions behind open source is that people want to be

creative and original and they don’t need much additional incentive

to engage in this manner. The only times when innovation will be

“undersupplied” is when creative people are prevented from accessing

the raw materials and tools that they need for work. Distribution of raw

materials and tools, then, is the fundamental problem that an intellec-

tual property rights regime needs to solve. Solving that problem allows

the system to release fully the creative energies of individuals. Even

84 • THE SUCCESS OF OPEN SOURCE

better, it promises to ratchet up the process over time as a “commons”

of raw materials grows. Open source intellectual property aims at cre-

ating a social structure that expands, not restricts, the commons.

The regime takes shape in a set of “licenses” written for the most

part in the language of standard legal documents. For now, think of

these licenses as making up a social structure for the open source pro-

cess. In the absence of a corporate organization to act as an ordering

device, licensing schemes are, in fact, the major formal social structure

surrounding open source.

Open source licensing schemes generally try to create a social struc-

ture that:

• Empowers users by ensuring access to source code.
• Passes a large proportion of the rights regarding use of the code

to the user rather than reserving them for the author. In fact, the

major right the author as copyright holder keeps is enforcement

of the license terms. The user gains the rights to copy and redis-

tribute, use, modify for personal use, and redistribute modified

versions of the software.
• Constrains users from putting restrictions on other users (present

and future) in ways that would defeat the original goals.

Precisely how these points are put into practice differs among open

source licenses. The differences are core explanatory elements of the

open source process. They depend in large part on underlying as-

sumptions about individuals’ motivations, and the robustness of the

commons, as well as some fundamental quarrels about the moral

versus pragmatic values connected to software. BSD-style licenses are

much less constraining than is the GPL. Arguments over the “appro-

priate” way to conceive of and implement licenses are an important

part of the story of open source in the 1990s (see Chap. 4). In a very

real sense, the open source community figures out its self-definition by

arguing about licenses and the associated notions of property, what is

worth protecting, that they embody. Remember that licenses act as the

practical manifestation of a social structure that underlies the open

source process.

The Debian Project, which Ian Murdock started in 1993 to produce

an entirely free operating system around a GNU/Linux distribution, is

most explicit but characteristic on this point. In 1997 Bruce Perens

What Is Open Source and How Does It Work? • 85

(who followed Murdock as the leader of Debian) wrote a document he

called the Debian social contract to articulate the underlying ideals.36

The Debian social contract clearly prioritizes the rights of users, to the

point at which it recognizes that many Debian users will choose to

work with commercial software in addition to free software. Debian

promises not to object to or to place legal or other roadblocks in the

way of this practice. The basic principle is nondiscrimination against

any person, group of people, or field of endeavor, including commer-

cial use. (There are sharp ethical differences here with at least some

free software advocates. These differences became a major point of

contention in the late 1990s when Perens and others recast the Debian

Free Software Guidelines as “The Open Source Definition,” in sharp

contrast to the Free Software Foundation’s stance against commercial

software on principle.) The principle of collaboration at work here is

clear: Do nothing to complicate or slow down the widespread distribu-

tion and use of open source software. On the contrary, do everything

you can to accelerate it by making open source software maximally at-

tractive to users. This is intellectual property to be sure, but it is a con-

cept of property configured around the right and responsibility to dis-

tribute, not to exclude.

architecture tracks organization. More than thirty years

ago, Melvin Conway wrote that the relationship between architecture

and organization in software development is driven by the communi-

cation needs of the people who are trying to collaborate.37 Conway’s

Law argues that the structure of a system—in this case, a technological

system of software code—mimics the structure of the organization that

designed it. Because the point of organization ultimately is to facilitate

successful coordination of the technology development process, Con-

way’s Law has been interpreted to mean that the technology architec-

ture should drive thinking about the organization, not vice versa.38

The problem is that early formulations of software architecture are

best guesses and are likely to be unstable, while a formal organization

set up to support those guesses locks in quickly and is hard to change.

As the architecture evolves, new communication paths are necessary

for collaborative work to succeed, but those communication paths are

not hardwired into the organization. This is one reason (not the only

one, of course) why informal, unplanned communication is so critical

86 • THE SUCCESS OF OPEN SOURCE

within organizations. It is not just tacit knowledge that gets passed

around at the water cooler; it is also communicable knowledge that

would travel through standard pathways quite easily, if those pathways

did exist.

Herbsleb and Grinter documented some of the ways in which these

informal knowledge transfers become more difficult with distance and

physical isolation, regardless of Internet connections.39 The existence

of a formally structured organization can, ironically, exacerbate the

problem. The formal organization puts a stake in the ground and

marks out particular communication paths, which makes it more awk-

ward to step outside those paths. Developers sometimes say they feel

like they are working in silos. When they need to talk to someone in

another silo, the initial difficulty comes in knowing exactly whom to

contact. The next is the difficulty of initiating contact and then follow-

ing up. This is a familiar feeling for anyone who has wondered how to

interpret an unreturned phone call or email when the other party is a

stranger (did the person not receive my message? Is she on vacation?

Does she just not care?)

In commercial software development, this silo problem causes more

than just social awkwardness. Developers communicate outside their

silos less frequently than they should; they are inclined to take a risk

that problems will not arise. Furthermore, developers in other silos say

they are not consulted frequently enough on decisions that affect what

they do. When communication does traverse silos, it takes longer to

find the right contact and then even longer to solve problems (what

developers call “cycle time”). Disagreements that cross silos frequently

have to be escalated to higher management for resolution.40 The really

interesting observation is the way these communication problems re-

flect themselves back into the code—how the organization comes to

influence the architecture. At least some of Herbsleb and Grinter’s

developers reported that they “strove to make absolutely minimal

changes, regardless of what the best way to make the change would be,

because they were so worried about how hard it would be to repair the

problem if they ‘broke the system.’”41 Whatever their technical predi-

lections, developers are clearly going to be influenced to write code

that compensates for the imperfections of the organizational structure

that sets the parameters for collaboration.

Open source developers know this problem well. Because their or-

What Is Open Source and How Does It Work? • 87

ganization is voluntary and most often informal, Conway’s Law makes

extraordinary demands on the technological architecture. This is one

of the major reasons why technical rationality is not deterministic in

the open source process. Technical rationality always is embedded in a

cultural frame, which for open source generally means Unix culture.

Technical rationality also is embedded in the organizational character-

istics of the development model. When people talk about “clean” code

and so on, they are making statements not only about some distinct

characteristic of source code but also about the way in which the tech-

nical artifact can interface with and be managed by a particular orga-

nized community.

Open source developers often say, “Let the code decide.” This

sounds on the face of it like an unproblematic technical rationality,

but it is not so in practice. The most important technical decisions

about the direction of software development are those that have long-

term consequences for the process of development. Many imply a set

of procedures that will need to be carried out in the development path

going forward. Implicitly then, and often explicitly, technical decisions

are influenced by beliefs about effective ways to organize develop-

ment. Technical discussions on how things should work and should be

done are intimately related to beliefs about and reflections on social

practices. Modularization of source code is an intimate reflection of

the complex collaboration problem invoked by voluntary large-scale

parallel processing in open source development. Technical rationality

may be a necessary part of the foundation for the open source process,

but it is not sufficient.

How Do Open Source Developers Resolve Disagreements?

Anyone who has dabbled in software engineering recognizes that dis-

agreement is the rule. A large number of very smart, highly motivated,

strongly opinionated, often brazenly self-confident, and deeply cre-

ative minds trying to work together creates an explosive mix.

Successful collaboration among these highly talented people is not

simple. Conflict is customary. It will not do to tell a story about the

avoidance of conflict among like-minded friends who are bound to-

gether by an unproblematic technical rationality, or by altruism, or ex-

changes of gifts.42 The same bandwidth that enables collaboration on

88 • THE SUCCESS OF OPEN SOURCE

the Internet just as readily enables conflict. People could use the Inter-

net to break off and create their own projects, to skewer the efforts of

others, and to distribute bad code just as quickly and widely as good

code. They do use the Internet on a regular basis to argue with each

other, sometimes quite bitterly. What needs to be explained is not the

absence of conflict but the management of conflict—conflict that is

sometimes deeply personal and emotional as well as intellectual and

organizational.

Major conflicts within the open source process seem to center on

three kinds of issues.43 The first is who makes the final decision if there

are deep and seemingly irreconcilable disagreements over the good-

ness of a specific solution, or a general direction for dealing with a

problem. The second is who receives credit for specific contributions

to a project. (Ironically, this second source of conflict can become

worse in more successful collaborations, because much of what is good

in these collaborations is created in the context of relationships as

much as by any particular individual.) The third major source of con-

flict is the possibility of forking. The right to fork per se is not at issue.

What causes contention is the issue of legitimacy. It is a question of

who can credibly and defensibly choose to fork the code, and under

what conditions.

Similar issues arise when software development is organized in a cor-

porate or commercial setting. Standard theories of the firm explain

various ways in which these kinds of conflicts are settled, or at least

managed, by formal authoritative organizations. Most of these mecha-

nisms are just not available to the open source community. There is no

boss who can implement a decision about how to proceed with a proj-

ect; there is no manager with the power to hire and fire; and there is

no formal process for appealing a decision.

In open source much of the important conflict management takes

place through behavioral patterns and norms. There are two descrip-

tive elements of these norms that I consider here: the visible nature of

leadership and the structures of decision-making.

Leadership is a peculiar issue for the open source community. The

popular media as well as most extended treatments of open source

focus on one project—Linux—and its remarkable leader, Linus Tor-

valds. There certainly is something unique about the man as an indi-

vidual. His style of leadership is alternatively charismatic and self-dep-

What Is Open Source and How Does It Work? • 89

recating. Torvalds (surprisingly to some) is a shy person whose self-

effacing manner seems authentic, not manufactured for effect. Devel-

opers respect Torvalds for having started Linux, but much more so

for his extraordinary intellectual and emotional commitment to the

Linux project through graduate school and later through a Silicon Val-

ley programming job. Although he does not claim to be the very best

programmer, he has maintained a clear vision about the evolving na-

ture of Linux, as well as the structure and style of the code that he in-

corporates into the kernel; and that vision has turned out over time to

look “right” more often than not. His vision has never been enforced

in an aggressively authoritative way. When challenged about his power

over Linux early on, Torvalds posted to the Linux mail list (on Febru-

ary 6, 1992) this revealing comment: “Here’s my standing on ‘keeping

control,’ in 2 words (three?): I won’t. The only control I’ve effectively

been keeping on Linux is that I know it better than anybody else.”

In fact, one of the most noteworthy characteristics of Torvalds’s

leadership style is how he goes to great lengths to document, explain,

and justify his decisions about controversial matters, as well as to admit

when he believes he has made a mistake or has changed his mind.

Torvalds seems intuitively to understand that, given his presumptive

claim on leadership as founder of the Linux project, he could fail his

followers in only one way—by being unresponsive to them. That does

not in any way rule out disagreement. In fact it prescribes it, albeit

within a controlled context. In the end, Torvalds is a benevolent dicta-

tor, but a peculiar kind of dictator—one whose power is accepted vol-

untarily and on a continuing basis by the developers he leads. Most of

the people who recognize his authority have never met him and proba-

bly never will.

But Torvalds’s charismatic leadership style is clearly not the only way

to lead an open source project. Richard Stallman has a very different

leadership style that has developed from his extraordinary prowess as a

code writer. He is self-consciously ideological and (in sharp contrast to

Torvalds’s fervent pragmatism) sees his leadership role at the Free

Software Foundation as piously defending an argument about ethics

and morality. Brian Behlendorf, one of the central figures behind the

Apache web server, has yet another leadership style and is known for

engaging deeply in the development of business models around open

source software. This kind of variance does not demonstrate that lead-

90 • THE SUCCESS OF OPEN SOURCE

ership is irrelevant; instead, it suggests that there are different ways

to lead and that a satisfying explanation of the open source process

needs to go beyond the question of leadership.

There is just as much variance in decision-making structures for

open source projects. In the early days of Linux, Linus Torvalds made

all the key decisions about what did or did not get incorporated into

the kernel. Many small-scale open source projects are run this way,

with one or a few decision makers choosing on the basis of their own

evaluations of code.

Chapter 4 describes how the decision-making system for Linux was

restructured in the mid-1990s, as both the program itself and the com-

munity of developers who contributed to it grew enormously. Linux to-

day is organized into a rather elaborate decision-making structure.

Torvalds depends heavily on a group of lieutenants who constitute

what many programmers call “the inner circle.” These are core devel-

opers who essentially own delegated responsibility for subsystems and

components. Some of the lieutenants onward-delegate to area-owners

(sometimes called “maintainers”) who have smaller regions of respon-

sibility. The organic result looks and functions like a decision hierar-

chy, in which responsibility and communication paths are structured

in something very much like a pyramid. Torvalds sits atop the pyramid

as a benevolent dictator with final responsibility for managing dis-

agreements that cannot be resolved at lower levels. The decision hier-

archy for Linux is still informal in an important sense. While program-

mers generally recognize the importance of the inner circle, no

document or organization chart specifies who is actually in it at any

given time. Everyone knew for years that the British programmer Alan

Cox was responsible for maintaining the stable version of the Linux

kernel (while Torvalds spends more of his time working on the next

experimental version) and that Torvalds pro forma accepted what Cox

decided. This made Cox close to something like a vice-president for

Linux. But Torvalds did not handpick or formally appoint Cox to this

role; he simply took it on as he established his expert status among the

community over time.44

The BSD derivatives on the whole follow a different decision-mak-

ing template, organized around concentric circles. A small core group

controls final access to the code base. This group grants (or revokes)

the rights to the next concentric circle, who can modify code or com-

What Is Open Source and How Does It Work? • 91

mit new code to the core base. These are the “committers.” In the

third concentric circle are the developers, who submit code to com-

mitters for evaluation. The boundaries of the circles are generally

more definite: FreeBSD, for example, has a core of 16 and about 180

committers in the second circle.

Larry Wall, the originator of the programming language Perl, in the

mid-1990s developed a different version of a delegated decision-mak-

ing structure.45 There is an inner circle of Perl developers, most of

whom took an informal leadership role for a piece of the code during

the transition from Perl version 4 to Perl version 5. Wall would pass to

another developer the leadership baton, that person would work on a

particular problem and then release a new version of the code, and

then pass the baton back to Wall. This process developed into what

Wall called “the pumpkin-holder system.”46 The pumpkin holder acts

as chief integrator, controlling how code is added to the main Perl

source. In a kind of rotating dictatorship pattern, the pumpkin gets

passed from one developer to another within the inner circle.

Apache has evolved a more highly formal decision-making system.

The Apache Group is an elite set of developers that together make de-

cisions about the Apache code base. The Group began in 1995 with

eight core developers who worked together to build Apache out of a

public domain http daemon, which is a piece of server software that re-

turns a web page in response to a query. There was no single project

leader per se, and the group was geographically diverse from the start,

with core developers in the United States, Britain, Canada, Germany,

and Italy. The Apache Group devised a system of email voting based on

minimal quorum consensus rule. Any developer who contributes to

Apache can vote on any issue by sending email to the mailing list.

Only votes cast by members of the Apache Group are binding; others

are simply expressing an opinion. Within the Apache Group, code

changes require three positive votes and no negative votes. Other deci-

sions need a minimum of three positive votes and an overall positive

majority. The Apache Group itself expands over time to include devel-

opers who have made excellent and sustained contributions to the

project. To join the Apache Group, you must be nominated by a mem-

ber and approved unanimously by all other members.47

Each of these decision-making systems has strengths and weaknesses

as coordination mechanisms. As Conway’s Law suggests, they make dif-

92 • THE SUCCESS OF OPEN SOURCE

ferent demands on the technology architecture. What they share is the

fundamental characteristic of the open source process—there is no au-

thority to enforce the roles and there is nothing to stop an individual

programmer or a group of programmers from stepping outside the

system. On a whim, because of a fundamental technical disagreement,

or because of a personality conflict, anyone could take the Linux code

base or the Apache code base and create their own project around it,

with different decision rules and structures. Open source code and

the license schemes positively empower this option. To explain the

open source process is, in large part, to explain why that does not hap-

pen very often and why it does when it does, as well as what that means

for cooperation.

This chapter painted a picture of the open source process, the prob-

lem(s) it is trying to solve, and what we can recognize about how it

seems to do that. These functional characterizations together describe

a set of important interactions among the developers who create open

source software—what they do, how they work together, and how they

resolve disagreements. Clearly these do not constitute by themselves a

robust explanation, and I have pointed out at various junctures why

not. To answer the broader question with which I began this chapter—

what are the conditions or boundaries for the open source process in

software engineering, or for extending a version of that process to dif-

ferent kinds of production?—we need a more general and deeper ex-

planation. That explanation needs to elucidate more precisely the ba-

sis of the equilibrium “solution” that open source has found, and to

illustrate either why it is not challenged or why challenges do not

disrupt it. The next chapter returns to a historical account of open

source software in the 1990s. Chapters 5 and 6 build the explanation.

What Is Open Source and How Does It Work? • 93

